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• A classical oracle O is a device that takes an input x and
outputs an answer O(x).
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O3(x) computes an unknown parity of x.
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Classical Oracles

• A classical oracle O is a device that takes an input x and
outputs an answer O(x).

x O(x)O

Examples:
O1(x) = 1 if x is a true statement about numbers,
O1(x) = 0 otherwise.
O2(x) = 1 if x is a satisfiable boolean formula,
O2(x) = 0 otherwise.
. . . Oracles can be used to add computational power.

O3(x) computes an unknown parity of x.
Determine the parity.

. . . Oracles can act as black boxes to be analyzed.
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How many “queries” does it take to learn p?



2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

Pp(s) = p · s

• A parity oracle. p(a, b)T (p1, p2)(a, b)T

How many “queries” does it take to learn p?



2
←|Top|Bot|→|�|TOC

Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

Pp(s) = p · s

• A parity oracle. p(a, b)T (p1, p2)(a, b)T

(1, 0)T (p1, p2)(1, 0)T = p1

How many “queries” does it take to learn p?
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Parity Oracles

• Bit strings may be identified with 0-1 vectors.
Example: 0110 ↔ (0, 1, 1, 0)T

• The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P (1101) = (1, 1, 1, 1)(1, 1, 0, 1)T = 3 mod 2 = 1

. . . computations with 0-1 entities are modulo 2.

• Parity of a substring.
Examples:

Pp(s) = p · s

• A parity oracle. p(a, b)T (p1, p2)(a, b)T

(1, 0)T (p1, p2)(1, 0)T = p1

(0, 1)T (p1, p2)(0, 1)T = p2

How many “queries” does it take to learn p?
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Reversible Oracles

• Reversible oracles add the answer to a register.

x x

b b +O(x)O

• Simulation, using a standard oracle.

x x

b b +O(b)

O

• Is the simulation equivalent to a reversible oracle?
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Quantum Oracles

• A Quantum Oracle is the linear extension of a
classical reversible oracle.∑
x,b αx,b x〉

I
b〉

O

 ∑
x,b αx,b x〉

I
b +O(x)〉

O

O
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Quantum Oracles

• A Quantum Oracle is the linear extension of a
classical reversible oracle.∑
x,b αx,b x〉

I
b〉

O

 ∑
x,b αx,b x〉

I
b +O(x)〉

O

O

• Quantum oracles versus classical reversible oracles?

Does it help to use a quantum computer to
analyze a classical reversible oracle?
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.
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1. Parity and the Hadamard basis.

Def.:
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+〉 = 1√
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−〉 = 1√
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AB

have a minus sign in
+〉

A
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1. Parity and the Hadamard basis.

Def.:

{
+〉 = 1√

2
( 0〉+ 1〉)

−〉 = 1√
2
( 0〉 − 1〉)

Which logical states ab〉
AB

have a minus sign in
+〉

A
+〉

B
, +〉

A
−〉

B
, −〉

A
+〉

B
, −〉

A
−〉

B
?

Ans.: States with odd parity w.r.t. the −〉-qubits.

Are these states distinguishable?

H

H+〉
A

+〉
B

0〉
A

0〉
B

Product state convention:
Multiply states associated with different qubit lines.
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.
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x〉
I

a +O(x)〉
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

1√
2
( 0〉

O
+ 1〉

O
) 1√

2
( 0〉

O
+ 1〉

O
)
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Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.
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O
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O
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2
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O
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O
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

−〉
O

−−〉
O

−〉 is an eigenstate of not with eigenvalue −1.
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

ps〉
I

−〉
O

s〉
I

(−1)p·s −〉
O

−〉 is an eigenstate of not with eigenvalue −1.
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

ps〉
I

−〉
O

(−1)p·s s〉
I

−〉
O

−〉 is an eigenstate of not with eigenvalue −1.
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

p

−〉
O

1
2n/2

∑
s s〉

I
1

2n/2

∑
s(−1)p·s s〉

I

−〉
O

−〉 is an eigenstate of not with eigenvalue −1.
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1.&2.

A

B

O

+〉
A
+〉

B
−〉

O

−〉
O

(p1, p2)

(−)p1〉
A
(−)p2〉

B
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H

H
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The Quantum Parity Problem

• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1.&2.

A
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B
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A
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B

H

H
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H

H0

0
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• Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

• Solution in two tricks.
1.&2.

A

B

O

+〉
A
+〉

B
−〉

O

−〉
O

(p1, p2)

(−)p1〉
A
(−)p2〉

B

H

H

0/1

0/1

p1

p2

H1

H

H0

0

• One query suffices for solving the n-qubit parity problem.

. . . note use of “quantum parallelism”.
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Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

0 prep(0)

b0/1 meas(Z 7→b)

not
(

0 1
1 0

)
Z sgn

(
1 0
0 −1

)
H had 1√

2

(
1 1
1 −1

)

cnot(AB)

A

B


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


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Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

0 prep(0)

b0/1 meas(Z 7→b)

not
(

0 1
1 0

)
Z sgn

(
1 0
0 −1

)
H had 1√

2

(
1 1
1 −1

)

cnot(AB)

A

B


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


00〉

AB
01〉

AB
10〉

AB
11〉

AB

00〉
AB

01〉
AB

10〉
AB

11〉
AB



9
←|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

V U



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

V UU−1U



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.

H



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.

H



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.

H



9
←|Top|Bot|→|�|TOC

Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.

HH H



9
←|Top|Bot|→|�|TOC
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• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.
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Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• Conjugating V by U gives U−1.V.U .

V UU−1

Applications: Network rearrangements.

U −1U UV

Error effect determination.
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Properties of Reversible Gates

• Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U2 = 1l.
Conjugation properties. . .

• sgn and not: not−1.sgn.not = −sgn, sgn−1.not.sgn = −not.

X

• sgn and not conjugated by had.
had−1.sgn.had = not, had−1.not.had = sgn.

• sgn and not conjugated by cnot.
cnot(AB)−1

.not(B)
.cnot(AB) = not(B)

,

cnot(AB)−1
.sgn(A)

.cnot(AB) = sgn(A)
,

cnot(AB)−1
.not(A)

.cnot(AB) = not(A)
.not(B)

,

cnot(AB)−1
.sgn(B)

.cnot(AB) = sgn(A)
.sgn(B)
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Preservation of Products of “Flips”

• Products of not and sgn are preserved under conjugation
by operators composed of cnot’s and had’s.

+/−

H

H

H

H

ZI
X

ZI
X

ZI
X

ZI
X

X
IZ

X
IZ

X
IZ

X
IZ
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Preservation of Products of “Flips”

• Products of not and sgn are preserved under conjugation
by operators composed of cnot’s and had’s.

+/−

H

H

H

H

ZI
X

ZI
X

ZI
X

ZI
X

X
IZ

X
IZ

X
IZ

X
IZ

UU−1

What is the power of this gate set?
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Consider U 1√

2
( x〉

S
+ eiφ z〉

S
) =

∑
y

1√
2
(uyx + eiφuyz) y〉

S
.

1 =
∑

y
1
2|uyx + eiφuyz|2

=
∑

y
1
2(|uyx|2 + |uyz|2 + eiφūyxuyz + e−iφuyxūyz)

= 1 + 2
∑

y Re(eiφūyxuyz)
= 1 + 2Re(eiφ

∑
y ūyxuyz).

Hence
∑

y ūyxuyz = 0.
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2
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Hence
∑
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• U is unitary. In matrix form with x ∈ {1, 2, . . . , N}:
U† U 1l

ū11 ū21 . . . ūN1

ū12 ū22 . . . ūN2
... ... . . . ...

ū1N ū2N . . . ūNN




u11 u12 . . . u1N

u21 u22 . . . u2N
... ... . . . ...

uN1 uN2 . . . uNN

 =


1 0 . . . 0

0 1 . . . 0
... ... . . . ...
0 0 . . . 1


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ū11 ū21 . . . ūN1
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ū1N ū2N . . . ūNN
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• Should every unitary operator be implementable?
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Allow use of ancillas and measurements.
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Universality for Gate Sets

• Should every unitary operator be implementable?

• A set of gates is universal if every unitary n-qubit operator
can be implemented with a network.

H

δ
Z

H

0/10

U

'

• Other notions of universality:
Allow use of ancillas and measurements.
Allow approximation to within arbitrarily small error.
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Locality Constraints on Gate Sets

• Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.
The Toffoli gate: c2not(ABC) = if A&B then not(C).

A

B

C

abc〉
ABC

 ab(c + a · b)〉
ABC


Discreteness: Finite gate sets are preferred.

Fault tolerance: Elementary gates should be
experimentally verifiable and readily made stable.

• . . . but do investigate other gate sets.
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